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Can I discretize my continuous
space and still study limit
properties of the dynamic?
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Stochastic Games
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Single-controller stochastic game with actions (a) Wait and (b) Commit.
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Simple blind MDP
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Blind MDP with actions (a) Approach, (b) Restart, and (c) Commit.
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Definitions
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Blind Stochastic Games

A Blind Stochastic Game is a tuple Γ = (S, I,J , δ, r , s1) where

S is a finite set of states.

I and J are finite sets of actions for each player.

δ : S × I × J → ∆(S) is a probabilistic transition function.

r : S → R is a reward function.

s1 ∈ S is an initial state.

Players play simultaneously and observe each others actions.
Therefore, they have the same belief over the current state.
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Limit Value

Denote σ and τ general strategies for the players.
For λ ∈ (0, 1), the λ-objective of the players is to optimize

γλ(σ, τ) := Eσ,τ

(
(1− λ)

∞∑
t=1

λt−1 r(St)

)
.

The value is defined as

valλ := min
σ

max
τ

γλ(σ, τ) = max
τ

min
σ

γλ(σ, τ) .

The limit value is defined as

val := lim
λ→1−

valλ .
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Previous results
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Mertens’ Conjecture

Conjecture (1987, International Congress of Mathematics)

In every (zero-sum) stochastic game, the limit value exists.

Proven in many special cases of stochastic games.
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Limit Value: Existence

Theorem (2002, Rosenberg & Solan & Vieille, Annals of Statistics)

Every blind 1-player stochastic game (MDP) has a limit value.
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Limit Value: Nonexistence

Theorem (2016, Bruno Ziliotto, Annals of Probability)

There exists a blind stochastic game where
the limit value does not exist.
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Limit Value: Undecidability

Theorem (2003, Madani & Hanks & Condon, Artificial Intelligence)

The problem of recognizing bounds ε-apart from
the limit value of blind MDPs is undecidable.
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Difficulty: Absorbing states

Difficulty:
Absorbing states can accumulate arbitrarily small contributions.
So, the player(s) behaviour depends on nonapproximable effects
because, in the limit value, they are infinitely patient.
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Simple blind MDP
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Blind MDP with actions (a) Approach, (b) Restart, and (c) Commit.
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Ergodic transitions
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Ergodicity: Forgetting where you come from

In Markov Chains, an ergodic transition probability P satisfies

lim
n→∞

Pn = 1µ⊤ .

Equivalently, for all p ∈ ∆(S), we have that

p⊤ lim
n→∞

Pn = µ⊤ .

In particular, s, s̃, s ′ ∈ S

lim
n→∞

∣∣∣Pn
s,s′ − Pn

s̃,s′

∣∣∣ = 0 .
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Coefficient of Ergodicity

Definition (Coefficient of Ergodicity)

Given a matrix P ∈ Rn×n, define

erg(P) := max
s,s̃∈[n]

∑
s′∈[n]

∣∣∣Pn
s,s′ − Pn

s̃,s′

∣∣∣ .

Note that

erg(PQ) ≤ erg(P) erg(Q).

erg(P) = 0 if and only if P = 1µ⊤.
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Ergodic Blind Stochastic Games

Definition (Ergodic blind stochastic game)

For all ε > 0, there exists an integer nε such that,
for all n ≥ nε and tuples of action pairs (i1, j1, . . . , in, jn),

erg
(
P(i1, j1) · · ·P(in, jn)

)
≤ ε .

Intuitively, the current belief is approximated by
considering only the last nε actions:
no need to remember your initial distribution!
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Verifying Ergodicity

By a counting argument, we get the following result.

Proposition (Paz, 1971, Introduction to Probabilistic Automata)

A blind stochastic game Γ is ergodic if and only if

there exists an integer n1 :=
3|S|−2|S|+1+1

2 is such that,
for every tuples of action pairs (i1, j1, . . . , in1 , jn1),

erg
(
P(i1, j1) · · ·P(in1 , jn1)

)
< 1 .

Raimundo Saona Ergodic Blind Stochastic Games



Our Contributions
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Limit Value: Existence

Theorem

Every ergodic blind stochastic game has a limit value.

Proof sketch.

Construct a finite stochastic game based on nε steps at a time.

Belief dynamics remain close between
the original and approximated model.

Finite-stage payoff remain close between the models.
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Limit Value: Approximability

Theorem

Approxmating the limit value of an ergodic blind stochastic game
can be done in 2-EXPSPACE.

Proof sketch.

The previous construction requires 2-EXP states.

Approximating the limit value can be done by
solving a sentence of the first order theory of the reals,
which is PSPACE on the input.
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Limit Value: Undecidability

Theorem

The problem of recognizing lower and upper bounds of the limit
value of ergodic blind MDPs is undecidable.

Proof sketch.

Consider an arbitrary blind MDP.

Add a positive transition to a new state and a restart action.

These modifications do not change the limit value, because
the controller is infinitely patient.

Remarkably, the transitions are now ergodic!
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Summary of Contributions

Blind Class Existence Approximation Exact

SGs No – –

Ergodic SGs Yes 2-EXPSPACE Undecidable
MDPs Yes Undecidable Undecidable

Ergodic MDPs Yes 2-EXPSAPCE Undecidable

Summary of results
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Thank you!
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